Sign in
Explore Mechanical Insights: Guest Blogging Opportunities in Our Journal
Explore Mechanical Insights: Guest Blogging Opportunities in Our Journal
Your Position: Home - Titanium - What is the electrolytic generation of sodium hypochlorite?
Guest Posts

What is the electrolytic generation of sodium hypochlorite?

May. 06, 2024

Disinfectant Maker Sodium Hypochlorite Generator | On-site ...

Sodium Hypochlorite Generator works on electrochlorination chemical process which uses water, common salt and electricity to produce Sodium Hypochlorite (NaOCl). The brine solution (or sea water) is made to flow through an electrolyzer cell, where direct current is passed which leads to Electrolysis. This produces Sodium Hypochlorite instantaneously which is a strong disinfectant. This is then dosed in water in the required concentration to disinfect water, or to prevent Algae Formation and Bio Fouling. Pristine Water is the leading manufacturer of On-site Sodium Hypochlorite Generator.

Read more

Operating Principle:

In the Electrolyser, the current is passed through the anode and cathode in the salt solution. which is a good conductor of electricity, thus electrolyzing the sodium chloride solution.

This results in chlorine (Cl2) gas being produced at the anode, while sodium hydroxide (NaOH) and hydrogen (H2) gas is produced at the cathode.

The reactions that take place in the electrolytic cell is:

2 NaCl + 2 H2O = 2 NaOH + Cl2 + H2

The chlorine further reacts with the hydroxide to form sodium hypochlorite (NaOCl). This reaction can be simplified in the following manner:

Cl2 + 2 NaOH = NaCl + NaClO + H2O

The solution generated has a pH value between 8 and 8.5, and a maximum equivalent chlorine concentration of less than 8 g/l. It has a very long shelf life which makes it suitable for storage.

After dosing the solution into the water flow, no pH value correction is necessary, as is often required in sodium hypochlorite produced by the membrane method. The sodium hypochlorite solution reacts in a balance reaction, resulting in hypochlorous acid:

NaClO + H2O = NaOH + HClO

To produce 1kg equivalent of chlorine using an on-site Sodium Hypochlorite generator, 4.5 kg of salt and 4-kilowatt hours of electricity is required. The final solution consists of approximately 0.8% (8 grams/liter) sodium hypochlorite.

Specification:

  • Simple: Only water, salt, and electricity is required
  • Non-Toxic: Common salt which is the main substance is non-toxic and easy to store. Electro chlorinator provides the power of Chlorine without the danger of storing or handling hazardous materials.
  • Low Cost: only water, common salt, and electricity is needed for electrolysis. The total operating cost of an Electrochlorinator is less than the conventional Chlorination methods.
  • Easy to dose to get a standard concentration: Sodium hypochlorite generated on-site does not degrade like commercial sodium hypochlorite. Therefore, the dosage need not be modified on a daily basis based on the strength of the hypo solution.
  • Approved disinfection method complying with the drinking water regulations – an alternative with fewer safety requirements to chlorine-gas-based systems.
  • Long service life, as compared with the membrane cell electrolysis
  • On-site generation of sodium hypochlorite allows the operator to produce the only which is needed and when it is needed.
  • Safe for the Environment: As compared to 12.5% sodium hypochlorite, the use of salt and water reduces carbon emission to 1/3rd. The hypo solution of less than 1% concentration produced by our system is benign and considered non-hazardous. This translates to reduced safety training and improved worker safety.

Sodium Hypochlorite generated on-site with the help of synthetic brine or seawater is very efficient in protecting the equipment from the growth of micro-organic fouling and control of algae and crustaceans. Compact Electrochlorinators manufactured by Pristine Water are ideal for the disinfection of water during disasters like earthquakes, floods, or epidemics. Electrochlorinators are designed for rural and village “point-of-use” disinfection of drinking water.

Advantages of On-Site Sodium Hypochlorite Generator:

Although the economic consideration is the major advantage in using On-site generated Sodium Hypochlorite over the use of other forms of Chlorination, the technical advantages are even greater.

The following are some of the problems associated with using commercial-grade liquid sodium hypochlorite. These have a high concentration (10-12%) of active chlorine. These are produced by bubbling gas chlorine in Caustic soda (Sodium Hydroxide). They are also commonly called Liquid Chlorine.

Corrosion

The corrosion due to Commercially produced hypochlorite is a concern because of its effect on the equipment. A 10 to 15% hypochlorite solution is very aggressive due to its high pH and chlorine concentration. Because of its aggressive nature, the hypochlorite solution will exploit any weakened areas in the hypochlorite piping system and may cause leaks. So using an On-site sodium Hypochlorite generator is a wise option.

For more information, please visit GIANT ANODE.

Scaling

The formation of calcium carbonate scale is another concern when using commercial grade liquid hypochlorite for chlorination. Commercial grade liquid hypochlorite has a high pH. When the high pH hypochlorite solution is mixed with the dilution water, it raises the pH of the mixed water to above 9. The calcium in the water will react and precipitate out as calcium carbonate scale. Items such as pipes, valves, and rotameters may scale up and no longer function properly. It is recommended that the commercial-grade liquid hypochlorite not be diluted and that the smallest pipelines, the flow rate will allow, should be used in the system.

Gas Production

Another concern with commercial-grade hypochlorite is gas production. Hypochlorite loses strength over time and generates oxygen gas as it decomposes. The rate of decomposition increases with concentration, temperature, and metal catalysts.

Personal Safety

A small leakage in the hypochlorite feed lines would result in the evaporation of the water and in turn the release of chlorine gas.

Chlorate Formation

The final area of concern is the possibility of chlorate ion formation. Sodium hypochlorite degrades over time to form the chlorate ion (ClO3-) and oxygen (O2). The degradation of the hypochlorite solution is dependent on the strength of the solution, temperature, and the presence of metal catalysts.

Decomposition of Commercial Sodium Hypochlorite can be created in two major ways:
a). The formation of Chlorates due to high pH, 3NaOCl= 2NaOCl+NaClO3.
b). Chlorine evaporation loss due to temperature increase.

Therefore, for any given strength and temperature, over a period of time, the higher strength product will eventually be lower in available chlorine strength than the lower strength product, since its decomposition rate is greater. The American Water Works Association Research Foundation (AWWARF) concluded that the decomposition of concentrated bleach (NaOCl) is the most probable source of chlorate production. A high concentration of Chlorate is not advisable in drinking water.

Chlorine Comparison Chart

Product Form pH Stability Available Chlorine Form Cl2 gas Low 100% Gas Sodium hypochlorite (Commercial) 13+ 5-10% Liquid Calcium hypochlorite granular 11.5 20% Dry Sodium hypochlorite (On-site) 8.7-9 0.8-1% Liquid

Now, which is the ideal disinfectant?

  • Chlorine Gas — It is too dangerous to handle and not safe in residential areas. Most of the time, they are not available.
  • Bleaching Powder — Calcium Hypochlorite is effective, but the whole process of mixing, settling, and disposing of the sludge is very messy and cumbersome. This makes the whole area dirty. Moreover, the bleaching powder absorbs moisture during monsoon or in wet surroundings and emits chlorine gas, making the bleaching power lose its strength.
  • Liquid Bleach — Liquid Chlorine -or Sodium Hypochlorite is very effective. This is in liquid form so very easy to handle. But the commercially available Liquid Chlorine is not only expensive but loses its strength over a period of time and becomes water. The danger of spillage is a common problem.
  • Electro Chlorinator — Very effective, economical, safe, and easy to prepare and use. This is the latest technology being adopted in most nations.

Pristine Water offers sodium hypochlorite generator systems that are very effective, budget-friendly, safe, easy to prepare and use.

Our design team will be delighted to create a customized solution for you. Contact us here.

On-Site Hypochlorite Generation Systems (OSEC)

On-Site Hypochlorite Generation Systems (OSEC)

OSEC systems produce a low strength disinfectant on demand by electrolysis of a brine solution

OSEC systems safely generate sodium hypochlorite on-demand, using only salt, water and power. With over 30 years of history installing OSHG systems throughout the world, our branded OSEC system is suited to many applications across municipal, aquatics and industrial markets.

Benefits Include:

Want more information on electrolytic sodium hypochlorite generator? Feel free to contact us.

  • Sodium hypochlorite is generated through a highly efficient in-situ process allowing economic production according to the actual demand.
  • Hypochlorite product is generated on-site and on-demand from inert feedstocks, reducing or eliminating common issues with chemical storage and handling.
  • Low strength solution at a stable concentration means minimized decomposition of active chlorine in solution always available.
  • Product generated with minimized disinfection by-product formation and further cost savings can be achieved via off-peak production scheduling.

Comments

0 of 2000 characters used

All Comments (0)
Get in Touch

  |   Transportation   |   Toys & Hobbies   |   Tools   |   Timepieces, Jewelry, Eyewear   |   Textiles & Leather Products   |   Telecommunications   |   Sports & Entertainment   |   Shoes & Accessories   |   Service Equipment