Sign in
Explore Mechanical Insights: Guest Blogging Opportunities in Our Journal
Explore Mechanical Insights: Guest Blogging Opportunities in Our Journal
Your Position: Home - Coating Services - Sputtering Recipes - UCSB Nanofab Wiki
Guest Posts

Sputtering Recipes - UCSB Nanofab Wiki

Oct. 07, 2024

Sputtering Recipes - UCSB Nanofab Wiki

Back to Vacuum Deposition Recipes. R1

If you want to learn more, please visit our website Acetron.

Please see the SignupMonkey Page for a list of currently installed targets.

Tips & Tricks

Ignition Issues

It is somewhat common that you might have a plasma ignition failure at some point. Common remedies for this are to increase the chamber pressure just for the ignition step, then drop dow to the process pressure in the PreClean and/or Dep step. For example, set the ignition step pressure to 10mTorr or 30mT, then during deposition decrease the pressure to 3mTorr and the plasma will stay lit.

Materials Table (Sputter 3)

The recipes below are given as starting points from data obtained in the nanofab. For critical depositions, calibrations are recommended.

Material P(mT) Pow(W) Sub(W) T(C) Ar N2 O2 Height-Tilt(mm) Rate(nm/min) Stress(MPa) Rs(uOhm-cm) n@633nm k@633nm Target Consumed Lower Limit Data Below Comment Au - - - - - - - - - - - - - Set: 200 W

Read: 400 VDC

no Al2O3 3 200 (RF2) off 20 30 1.5 1.52"-4mm 5.32 1. 0 no Demis D. John Co 10(5) 200 0 20 25 0 0 25-9 2.3 - - - - yes Alex K Cr 5 200 0 20 25 0 0 44-4 6.84 - - - - no Brian Cu 1.5 50(395v) 0 20 25 0 0 25-9 4.15 - - - - no Ning Cu 5 150(~490v) 0 20 15 0 0 0.82"-9 8 - - - - yes Ning Fe 10(5) 200 0 20 25 0 0 25-9 1.25 - - - - No Alex K Mo 3 200 0 20 25 0 0 44-4 13.15 - - - - yes Ning Ni 5 150 0 20 25 0 0 44-4 5.23 - - - - yes Ning Ni 5 150 0 20 25 0 0 25-9 1.82 - - - - yes Ning Ni 5 75 0 20 25 0 0 44-4 2.50 - - - - yes Ning Ni 3 200 0 20 25 0 0 44-4 9.4 - - - - yes Ning Ni 1.5 50(399v) 0 20 25 0 0 25-9 0.96 - - - - no Ning Pt 3 50 0 20 25 0 0 0.82"-9 2.9 - - - - no Ning Si 8 250 0 25 25 0 0 15-3 1.4 - - - - no Gerhard - ramp 2W/s - 3% Unif 4" wafer SiN 3 200 10 20 25 3 0 25-9 1.56 - - 1.992 - yes Brian SiN 3 250 10 20 25 2.5 0 25-9 2.1 - - 2.06 - yes Brian SiO2 3 200 10 20 25 0 3 25-9 3.68 - - 1.447 - yes Brian SiO2 3 200 10 20 25 0 5 45-3 2.60 - - 1.471 - yes Brian SiO2 3 250 10 20 25 0 2.5 25-9 4.3 - - 1.485 - yes Brian Ta 5 150 0 20 25 0 0 44-4 9.47 - - - - yes Ning Ta 5 75 0 20 25 0 0 44-4 5.03 - - - - yes Ning Ti 3 100 0 20 25 0 0 25-9 1.34 - - - - yes Ning SampleClean-NativeSiO2 10 0 18 20 25 0 0 44-4 - - - - - yes 150Volts 5 min

Height Conversion for Older Recipes

Old recipes using the manual Height setting in millimeters can be converted to the new programmatic settings in inches as follows:

Old (mm) New (inches) Typical Gun Tilt (mm) 15 25 0.82 9 44 1.52 4

Interpolation plot can be found here.

Fe and Co Deposition (Sputter 3)

Cu Deposition (Sputter 3)

Mo Deposition (Sputter 3)

Ni and Ta Deposition (Sputter 3)

SiO2 Deposition (Sputter 3)

SiN Deposition (Sputter 3)

Ti Deposition (Sputter 3)

Please see the SignupMonkey page for a list of currently installed targets.

Materials Table (Sputter 4)

The recipes below are given as starting points from data obtained in the nanofab. For critical depositions, calibrations are recommended.

Material P(mT) Power Source Pow(W) Sub(W) T(C) Ar N2 O2 Height-Tilt(mm) Rate(nm/min) Stress(MPa) Rs(uOhm-cm) n@633nm k@633nm Data Below Comment Al 5 200 0 20 45 0 0 H2.75-T5 4.4 - - - - Yes Ning Cao Al2O3 3 RF4-Sw1 200 0 20 30 0 1.5 H2.75-T5 5.1 1. 0 partial Demis D. John Au 5 200 0 20 45 0 0 H1-T10 17.7 - - - - Yes Ning Cao Au 10 200 0 20 45 0 0 H2.75-T5 35.5 - - - - Yes Demis: 200W rate (Max for Au) -08-03 Cu 5 150 0 20 30 0 0 H0.82-T9 6.7 No (SEM available) Ning Cao Nb 4 250 0 20 30 0 0 H2.00-T7 7.5 - - - - No Pt 5 200 0 20 45 0 0 H2.75-T5 7.4 - - - - Yes Ning Cao Pt 3 50(439V) 0 20 45 0 0 H2.75-T5 3.9 - - - - Yes Ning Cao Ru 3 200 45 H2.75-T4 ~10 Yes Ning Cao Ti 10 200 0 20 45 0 0 H2.75-T5 2.3 - - - - Yes Ning Cao TiN 3 150 110V 20 48.25 1.75 0 H2.5-T5 2 - 60 - - No TiO2 3 250(RF:450V) 0 20 45 0 3 H2.75-T5 4.3 - - - Yes Ning Cao TiW 4.5 200 0 20 45 0 0 H1-T10 4.7 - - - - Yes Ning Cao TiW 4.5 300 0 75 45 0 0 H2.75-T5 9.5 -150 to 150 60 - - Yes 10%Ti by Wt W 3 300 0 50 45 0 0 H2.75-T5 11.5 -150 to 150 11 - - Yes Jeremy Watcher

Au Deposition (Sputter 4)

Al Deposition (Sputter 4)

Al2O3 Deposition (Sputter 4)

  • Rate: 5.134 nm/min
  • Cauchy Refractive Index Params (fit from λ=190-nm, indicating transparency over this range)
    • A = 1.626
    • B = 5.980E-3
    • C = 1.622E-4

Pt Deposition (Sputter 4)

Ru Deposition (Sputter 4)

Ti-Au Deposition (Sputter 4)

TiO2 Deposition (Sputter 4)

TiW Deposition (Sputter 4)

W-TiW Deposition (Sputter 4)

Please see the SignupMonkey page for a list of currently installed targets.

Want more information on sio2 sputtering? Feel free to contact us.

Materials Table (Sputter 5)

The recipes below are given as starting points from data obtained in the nanofab. For critical depositions, calibrations are recommended.

Material P(mT) Power Source Pow(W) Sub(V) T(C) Ar N2 O2 Height-Tilt(mm) Rate(nm/min) Stress(MPa) Rs(uOhm-cm) Rq(nm) n@633nm k@633nm LPDb/LPDa* Data Below Comment Al 5 250 0 20 45 0 0 H1-T10 2.5 22 No (SEM available) Ning Al2O3 1.5 DC5-SW1 150 - - 45 - 5 H2.75-T5 5.3 ? ? ? 1.641 - ? No Demis -04-13 Cr 5.0 RF 200 ~345 20 45 H2.75-T5 4.47 No BT -07-02 Pt 3.0 200(507v) - - 45 - - H1-T10 7.03 ? ? ? 2.068 4.951 ? No Ning -09-27 SiO2 3 250 120 20 45 0 2 H1.0-T10 2.32 - - 1.49 - 153/ No Biljana SiO2 3 250 120 20 45 0 4.5 H1.0-T10 2.29 -515 - 0.210 1.49 138/ No ( AFM available) Biljana SiO2 3 250 120 20 45 0 6 H1.0-T10 2.32 - - 1.49 - 27/ Yes Biljana Ti 3.0 200(374v) - - 45 - - H1-T10 2.52 ? ? ? 2.679 1.853 ? No Ning -09-27

*LPD: light particle detection:

  • LPDb: light particle detection before deposition
  • LPDa: light particle detection after deposition

SiO2 Deposition (Sputter 5)

Ion-Beam Assisted Deposition - high density reactive sputtering for dielectric film stacks, with angled/rotating fixtures.

  • Method to calibrate multi-layer optical films: For example, for calibrating and depositing Multi-layer DBR gratings, Anti-Reflection coatings etc.

IBD Process Control Plots - Plots of all process control data.

SiO2 deposition (IBD)

SiO2 Thin-Film Properties (IBD)

  • Dep.rate: &#; 5.2 nm/min (users must calibrate this prior to critical deps)
  • HF Etch Rate ~350 nm/min
  • Stress &#; -390MPa (compressive)
  • Refractive Index: &#; 1.494
  • Cauchy Parameters (350-nm):
    • A = 1.480
    • B = 0.
    • C = -3.e-5

SiO2 Uniformity

Measured in June (Demis D. John)

Uniformity Statistics Thickness (nm) Refractive Index

(at 632nm)

Mean (Avg.), nm .80 1.480 Min .09 1.479 Max .9 1.482 Std. Deviation (nm) 5.99 8.6e-4 Credit: Demis D. John, -06-15

Plot of SiO2 thickness and refractive index measured across 6-inch wafer, measured with ellipsometry.


Si3N4 deposition (IBD)

Si3N4 Thin-Film Properties (IBD)

  • Deposition Rate: &#; 4.10 nm/min (users must calibrate this prior to critical deps)
  • HF Etch Rate: ~11nm/min
  • Stress &#; -MPa (compressive)
  • Refractive Index: &#; 1.969
  • Cauchy Parameters (350-nm):
    • A = 2.000
    • B = 0.
    • C = 1.e-4

Ta2O5 deposition (IBD)

Ta2O5 Thin-Film Properies (IBD)

  • Ta2O5 1hr depositions:
  • Deposition Rate: &#; 7.8 nm/min (users must calibrate this prior to critical deps)
  • HF Etch Rate &#; 2 nm/min
  • Stress &#; -232MPa (compressive)
  • Refractive Index: &#; 2.172
  • Cauchy Parameters (350-nm):
    • A = 2.
    • B = 0.
    • C = -0.

Al2O3 deposition (IBD)

  • Al2O3 [IBD] Standard Recipe - "1_Al2O3_dep"
  • Al2O3 [IBD] Process Control Data

Al2O3 Thin-Film Properties (IBD)

  • Deposition Rate &#; 2.05nm/min (users must calibrate this prior to critical deps)
  • HF etch rate &#; 167nm/min
  • Stress &#; -332MPa (compressive)
  • Refractive Index: &#; 1.656
  • Cauchy Parameters (350-nm):
    • A = To Be Added
    • B =
    • C =
  • Absorbing < ~350nm

TiO2 deposition (IBD)

TiO2 Thin-Film Properties (IBD)

  • Deposition Rate: &#; 1.29 nm/min (users must calibrate this prior to critical deps)
  • HF etch rate ~5.34nm/min
  • Stress &#; -445MPa (compressive)
  • Refractive Index: &#; 2.259
  • Cauchy Parameters (350-nm):
    • A = 2.435
    • B = -4.e-4
    • C = 0.
  • Absorbing < ~350nm wavelength

SiOxNy deposition (IBD)

These are some old (), initial characterizations only. A recipe improvement would be to increase the Assist O2+N2 = 60sccm total, increasing repeatability by getting away from the low-flow limit of the MFC's. Data provided by Demis D. John, .

xNy: Refractive Index vs. O2/N2 Flow.

IBD SiO: Refractive Index vs. O2/N2 Flow.

xNy vs. Assist O2 flow.

Dep. Rate of IBD SiOvs. Assist Oflow.

Standard Cleaning Procedure (IBD)

You must edit the "#_GridClean"("#" is your group number) steps in your Process according to the following times:

  • 5min GridClean for 1hr or less deposition
  • 10min GridClean for up to 2hrs of dep.
  • Do not deposit for longer than 2hrs - instead break up your Process into multiple 2-hr subroutines with cleans in between. See the recipe "1_SiO2_Dep_Multi" for an example.

Standard Grid-Clean Recipe

To Be Added

This Tool has been Disabled, and is not available for use any more! These recipes are displayed here for historical/reference purposes only.

Al Deposition (Sputter 2)

AlNx Deposition (Sputter 2)

Au Deposition (Sputter 2)

TiO2 Deposition (Sputter 2)

Silicon Dioxide (SiO2) Sputtering Targets, Fused Quartz

1 piece/133 &#; 

Please contact us for quotes on larger quantities !!!  

Silicon Dioxide (SiO2) Sputtering Targets, Fused Quartz

Purity: 99.995%, Size: 3'', Thickness: 0.250'' 

Sputtering is a proven technology capable of depositing thin films from a wide variety of materials on to diverse substrate shapes and sizes.
The process with sputter targets is repeatable and can be scaled up from small research and development projects. The proses with sputter
targets can be adapted to the production batches involving medium to large substrate areas. The chemical reaction can occur on the target
surface, in-flight or on the substrate depending on the process parameters. The many parameters make sputter deposition a complex process 
but allow experts a large degree of control over the growth and microstructure of the area. 

Applications of Sputtering Targets;

  • Sputtering targets is used for film deposition. The deposition made by sputter targets is a method of depositing thin films by sputtering
          that involves eroding material from a "target" source onto a "substrate" such as  a silicon wafer.
  • Semiconductor sputtering targets is used to etch the target. Sputter etching is chosen in cases where a high degree of etching anisotropy
          is needed and selectivity is not a concern.
  • Sputter targets is also used for analysis by etching away the target material.

One of the example occurs in secondary ion spectroscopy (SIMS), where the target sample is sputtered at a constant rate. As the target is sputtered, 
the concentration and identity of sputtered atoms are measured using mass spectrometry. By helping of the sputtering target, the composition of the
target material can be determined and even extremely low concentrations of impurities are detected.

Sputtering target has also application area in space. Sputtering is one of the forms of space weathering, a process that changes the physical and 
chemical properties of airless bodies, such as asteroids and the Moon.

For more sputtering target materialsinformation, please contact us. We will provide professional answers.

Comments

0 of 2000 characters used

All Comments (0)
Get in Touch

  |   Transportation   |   Toys & Hobbies   |   Tools   |   Timepieces, Jewelry, Eyewear   |   Textiles & Leather Products   |   Telecommunications   |   Sports & Entertainment   |   Shoes & Accessories   |   Service Equipment